spot_img
spot_img
Bruckner Textile Machinery
Ready To Show textile and Fashion Expo
spot_img

New Nature Publication Confirms CARBIOS’ Leadership in Enzymatic Degradation of Plastic

CARBIOS, (Euronext Growth Paris : ALCRB), a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, announces the publication of a new article entitled “An engineered enzyme embedded into PLA to make self-biodegradable plastic” in Nature, widely regarded as the most influential scientific journal, and co-authored with its longstanding collaborator, the Toulouse Biotechnology Institute (TBI).

Enzyme-embedded PLA plastic can fully and rapidly degrade in home-compost or methanization conditions. The article describes the optimization process used to achieve an engineered enzyme able to withstand the 170°C temperature required to introduce it in molten state PLA during the plastic production process. The new enzyme-embedded material is proven to fully distintegrate and biodegrade at a much faster rate than the 26-week home-compost certification requirement and is also shown to help produce more biomethane, another source of waste recovery.

Moreover, the material remains intact over long-term storage, the enzyme only being activated under composting or methanization conditions, ensuring compatibility with commercial PLA-based applications, for example, flexible packaging (such as sauce packets and wrappers) and short-life items (such as food containers, yogurt pots and coffee capsules).

CARBIOS Active: CARBIOS’ commercial biodegradation solution is the direct result of the unique know-how developed by its enzymology experts

CARBIOS’ expertise in enzyme optimization contributed to the development of CARBIOS Active’s formula and industrial process. Integrated directly into the plastic material transformation process without any modification to production lines, the encapsulated enzyme CARBIOS Active enables the creation of a new generation of PLA products that are 100% compostable at ambient temperature, while ensuring quality compost, free from toxicity and microplastics.

New Nature Publication Confirms CARBIOS’ Leadership

CARBIOS Active therefore opens up new biodegradation possibilites for PLA at ambient temperatures, including domestic composting conditions. A production line is already up and running at CARBIOS headquarters in Clermont-Ferrand, France, which can produce 2,500 tons/year of CARBIOS Active (required for the equivalent of 50,000 tons/year of enzyme-embedded PLA).

“A publication in Nature is an especially proud moment for all the contributing teams, notably recognition from peers in the scientific community. Developing an efficient enzyme that can withstand the 170°C needed to introduce it into PLA is an outstanding scientific feat! Our previous article published in Nature in 2020 was pivotal in bringing our PET biorecycling technology to the world stage. We are very excited by the enhanced visibility of CARBIOS’ unique biodegradation technology brought by this publication, as it offers a practical and scalable approach to various industrial PLA-based packaging applications.” Alain Marty, Chief Scientific Officer of Carbios

“CARBIOS Active is the real-life application of CARBIOS’ expertise in enzyme optimization and polymer science. As CARBIOS expands its portfolio of enzymatic solutions beyond PET, enzyme-embedded PLA represents a major leap forward, addressing a critical gap in the market for compostable plastic.

The recognition from the scientific community through this new publication in Nature comes in addition to recent certifications, such as the Food Contact Notification delivered by the FDA in North America, to attest CARBIOS Active’s performance and support its commercial deployment. Thanks to our long-term and exclusive partnership with Novonesis, we are transforming this scientific breakthrough into reality.” Emmanuel Ladent, CEO of CARBIOS

New Nature Publication Confirms CARBIOS’ Leadership

“I am immensely proud that the efforts and dedication of the researchers at TBI and our long-term partners at CARBIOS have been recognized by the journal Nature. This pioneering work on enzyme-embedded PLA to make self-biodegradable plastic is testament to our commitment to developing sustainable solutions with enzyme engineering at the core.” Isabelle André, Research Director at CNRS

The article is co-authored by biotechnology researchers from CARBIOS and its academic partner Toulouse Biotechnology Institute (TBI), as well as two eminent professors from University of Mons (Belgium) and Kasetsart University of Bangkok (Thailand). Once again, this collaboration demonstrates CARBIOS’ ambition and ability to rally partners together in an efficient ecosystem to bring a collective solution to a major environmental challenge.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

spot_img
spot_img
spot_img
spot_img
spot_img
spot_img
spot_img
spot_img
spot_img
spot_img
spot_img
spot_img
spot_img
spot_img
spot_img
spot_img

Related News

YKK Unveils Innovative Zipper to Boost Garment Recycling

NATULON Plus® with Recycled PET Open Parts to be...

EURATEX and AMITH Sign Memorandum of Understanding to Strengthen Euro-Mediterranean Partnership in the Textiles industry

Today, EURATEX (the European Apparel and Textile Confederation) and...

EDANA Hosts Groundbreaking Sustainability Forum 2024, Showcasing Pathways to a Greener Future for the Nonwovens Industry

EDANA, the leading global association for the nonwovens and...

Texcare 2024: Unique Technologies for Textile Care

• Automation, digitization, logistics and AI are essential for...

The Belgian Textile Industry in 2023: Stability Amid Challenges

Turnover Holds Steady Despite Declines in Volume In 2023, the...

CHT Group Honored by Adidas as a Leader in Sustainability for the Second Time in a Row

Adidas honored the CHT Group as a Champion for...

Biancalani Highlights Eco-Friendly Advances at ITMA Asia 2024

At ITMA Asia + CITME, Biancalani Textile Machinery reaffirmed...

Monforts Leads with Sustainable Innovations at ITMA Asia + CITME

Monforts, a prominent leader in textile finishing machinery, recently...
×